Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Heart Circ Physiol ; 325(6): H1337-H1353, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37801046

RESUMO

Neuraminidases cleave sialic acids from glycocalyx structures and plasma neuraminidase activity is elevated in type 2 diabetes (T2D). Therefore, we hypothesize circulating neuraminidase degrades the endothelial glycocalyx and diminishes flow-mediated dilation (FMD), whereas its inhibition restores shear mechanosensation and endothelial function in T2D settings. We found that compared with controls, subjects with T2D have higher plasma neuraminidase activity, reduced plasma nitrite concentrations, and diminished FMD. Ex vivo and in vivo neuraminidase exposure diminished FMD and reduced endothelial glycocalyx presence in mouse arteries. In cultured endothelial cells, neuraminidase reduced glycocalyx coverage. Inhalation of the neuraminidase inhibitor, zanamivir, reduced plasma neuraminidase activity, enhanced endothelial glycocalyx length, and improved FMD in diabetic mice. In humans, a single-arm trial (NCT04867707) of zanamivir inhalation did not reduce plasma neuraminidase activity, improved glycocalyx length, or enhanced FMD. Although zanamivir plasma concentrations in mice reached 225.8 ± 22.0 ng/mL, in humans were only 40.0 ± 7.2 ng/mL. These results highlight the potential of neuraminidase inhibition for ameliorating endothelial dysfunction in T2D and suggest the current Food and Drug Administration-approved inhaled dosage of zanamivir is insufficient to achieve desired outcomes in humans.NEW & NOTEWORTHY This work identifies neuraminidase as a key mediator of endothelial dysfunction in type 2 diabetes that may serve as a biomarker for impaired endothelial function and predictive of development and progression of cardiovascular pathologies associated with type 2 diabetes (T2D). Data show that intervention with the neuraminidase inhibitor zanamivir at effective plasma concentrations may represent a novel pharmacological strategy for restoring the glycocalyx and ameliorating endothelial dysfunction.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Doenças Vasculares , Camundongos , Humanos , Animais , Zanamivir/farmacologia , Neuraminidase/química , Neuraminidase/farmacologia , Células Endoteliais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Antivirais/farmacologia , Inibidores Enzimáticos/farmacologia
2.
Basic Res Cardiol ; 118(1): 11, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36988733

RESUMO

Coronary microvascular dysfunction (CMD) is associated with cardiac dysfunction and predictive of cardiac mortality in obesity, especially in females. Clinical data further support that CMD associates with development of heart failure with preserved ejection fraction and that mineralocorticoid receptor (MR) antagonism may be more efficacious in obese female, versus male, HFpEF patients. Accordingly, we examined the impact of smooth muscle cell (SMC)-specific MR deletion on obesity-associated coronary and cardiac diastolic dysfunction in female mice. Obesity was induced in female mice via western diet (WD) feeding alongside littermates fed standard diet. Global MR blockade with spironolactone prevented coronary and cardiac dysfunction in obese females and specific deletion of SMC-MR was sufficient to prevent obesity-associated coronary and cardiac diastolic dysfunction. Cardiac gene expression profiling suggested reduced cardiac inflammation in WD-fed mice with SMC-MR deletion independent of blood pressure, aortic stiffening, and cardiac hypertrophy. Further mechanistic studies utilizing single-cell RNA sequencing of non-cardiomyocyte cell populations revealed novel impacts of SMC-MR deletion on the cardiac cellulome in obese mice. Specifically, WD feeding induced inflammatory gene signatures in non-myocyte populations including B/T cells, macrophages, and endothelium as well as increased coronary VCAM-1 protein expression, independent of cardiac fibrosis, that was prevented by SMC-MR deletion. Further, SMC-MR deletion induced a basal reduction in cardiac mast cells and prevented WD-induced cardiac pro-inflammatory chemokine expression and leukocyte recruitment. These data reveal a central role for SMC-MR signaling in obesity-associated coronary and cardiac dysfunction, thus supporting the emerging paradigm of a vascular origin of cardiac dysfunction in obesity.


Assuntos
Cardiomiopatias , Insuficiência Cardíaca , Masculino , Feminino , Camundongos , Animais , Camundongos Obesos , Insuficiência Cardíaca/complicações , Multiômica , Receptores de Mineralocorticoides/genética , Receptores de Mineralocorticoides/metabolismo , Volume Sistólico , Antagonistas de Receptores de Mineralocorticoides/farmacologia , Obesidade/metabolismo
3.
Metabolism ; 130: 155165, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35183546

RESUMO

INTRODUCTION: High salt intake and aldosterone are both associated with vascular stiffening in humans. However, our preliminary work showed that high dietary salt alone did not increase endothelial cell (EC) or vascular stiffness or endothelial sodium channel (EnNaC) activation in mice, presumably because aldosterone production was significantly suppressed as a result of the high salt diet. We thus hypothesized that high salt consumption along with an exogenous mineralocorticoid would substantially increase EC and vascular stiffness via activation of the EnNaC. METHODS AND RESULTS: Mice were implanted with slow-release DOCA pellets and given salt in their drinking water for 21 days. Mice with either specific deletion of the alpha subunit of EnNaC or treated with a pharmacological inhibitor of mTOR, a downstream signaling molecule involved in mineralocorticoid receptor activation of EnNaC, were studied. DOCA-salt treated control mice had increased blood pressure, EC Na+ transport activity, EC and arterial stiffness, which were attenuated in both the αEnNaC-/- and mTOR inhibitor treated groups. Further, depletion of αEnNaC prevented DOCA-salt-induced impairment in EC-dependent vascular relaxation. CONCLUSION: While high salt consumption alone does not cause EC or vascular stiffening, the combination of EC MR activation and high salt causes activation of EnNaC which increases EC and arterial stiffness and impairs vascular relaxation. Underlying mechanisms appear to include mTOR signaling.


Assuntos
Acetato de Desoxicorticosterona , Hipertensão , Rigidez Vascular , Animais , Pressão Sanguínea , Células Endoteliais/metabolismo , Canais Epiteliais de Sódio , Camundongos , Sódio
4.
Am J Physiol Heart Circ Physiol ; 322(2): H167-H180, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34890280

RESUMO

Consumption of diets high in fat, sugar, and salt (Western diet, WD) is associated with accelerated arterial stiffening, a major independent risk factor for cardiovascular disease (CVD). Women with obesity are more prone to develop arterial stiffening leading to more frequent and severe CVD compared with men. As tissue transglutaminase (TG2) has been implicated in vascular stiffening, our goal herein was to determine the efficacy of cystamine, a nonspecific TG2 inhibitor, at reducing vascular stiffness in female mice chronically fed a WD. Three experimental groups of female mice were created. One was fed regular chow diet (CD) for 43 wk starting at 4 wk of age. The second was fed a WD for the same 43 wk, whereas a third cohort was fed WD, but also received cystamine (216 mg/kg/day) in the drinking water during the last 8 wk on the diet (WD + C). All vascular stiffness parameters assessed, including aortic pulse wave velocity and the incremental modulus of elasticity of isolated femoral and mesenteric arteries, were significantly increased in WD- versus CD-fed mice, and reduced in WD + C versus WD-fed mice. These changes coincided with respectively augmented and diminished vascular wall collagen and F-actin content, with no associated effect in blood pressure. In cultured human vascular smooth muscle cells, cystamine reduced TG2 activity, F-actin:G-actin ratio, collagen compaction capacity, and cellular stiffness. We conclude that cystamine treatment represents an effective approach to reduce vascular stiffness in female mice in the setting of WD consumption, likely because of its TG2 inhibitory capacity.NEW & NOTEWORTHY This study evaluates the novel role of transglutaminase 2 (TG2) inhibition to directly treat vascular stiffness. Our data demonstrate that cystamine, a nonspecific TG2 inhibitor, improves vascular stiffness induced by a diet rich in fat, fructose, and salt. This research suggests that TG2 inhibition might bear therapeutic potential to reduce the disproportionate burden of cardiovascular disease in females in conditions of chronic overnutrition.


Assuntos
Cistamina/farmacologia , Dieta Ocidental/efeitos adversos , Inibidores Enzimáticos/farmacologia , Proteína 2 Glutamina gama-Glutamiltransferase/antagonistas & inibidores , Rigidez Vascular/efeitos dos fármacos , Actinas/metabolismo , Animais , Aorta/metabolismo , Aorta/fisiologia , Células Cultivadas , Colágeno/metabolismo , Elasticidade , Feminino , Humanos , Artérias Mesentéricas/metabolismo , Artérias Mesentéricas/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/fisiologia , Análise de Onda de Pulso
5.
Front Physiol ; 12: 588358, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33854438

RESUMO

Enhanced mineralocorticoid receptor (MR) signaling is critical to the development of endothelial dysfunction and arterial stiffening. However, there is a lack of knowledge about the role of MR-induced adipose tissue inflammation in the genesis of vascular dysfunction in women. In this study, we hypothesize that MR activation in myeloid cells contributes to angiotensin II (Ang II)-induced aortic stiffening and endothelial dysfunction in females via increased pro-inflammatory (M1) macrophage polarization. Female mice lacking MR in myeloid cells (MyMRKO) were infused with Ang II (500 ng/kg/min) for 4 weeks. This was followed by determinations of aortic stiffness and vasomotor responses, as well as measurements of markers of inflammation and macrophage infiltration/polarization in different adipose tissue compartments. MyMRKO mice were protected against Ang II-induced aortic endothelial stiffening, as assessed via atomic force microscopy in aortic explants, and vasorelaxation dysfunction, as measured by aortic wire myography. In alignment, MyMRKO mice were protected against Ang II-induced macrophage infiltration and M1 polarization in visceral adipose tissue (VAT) and thoracic perivascular adipose tissue (tPVAT). Collectively, this study demonstrates a critical role of MR activation in myeloid cells in the pathogenesis of vascular dysfunction in females associated with pro-inflammatory macrophage polarization in VAT and tPVAT. Our data have potential clinical implications for the prevention and management of cardiovascular disease in women, who are disproportionally at higher risk for poor outcomes.

6.
Cardiovasc Diabetol ; 20(1): 80, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33882908

RESUMO

OBJECTIVE: Cardiac diastolic dysfunction (DD) and arterial stiffness are early manifestations of obesity-associated prediabetes, and both serve as risk factors for the development of heart failure with preserved ejection fraction (HFpEF). Since the incidence of DD and arterial stiffness are increasing worldwide due to exponential growth in obesity, an effective treatment is urgently needed to blunt their development and progression. Here we investigated whether the combination of an inhibitor of neprilysin (sacubitril), a natriuretic peptide-degrading enzyme, and an angiotensin II type 1 receptor blocker (valsartan), suppresses DD and arterial stiffness in an animal model of prediabetes more effectively than valsartan monotherapy. METHODS: Sixteen-week-old male Zucker Obese rats (ZO; n = 64) were assigned randomly to 4 different groups: Group 1: saline control (ZOC); Group 2: sacubitril/valsartan (sac/val; 68 mg•kg-1•day-1; ZOSV); Group 3: valsartan (31 mg•kg-1•day-1; ZOV) and Group 4: hydralazine, an anti-hypertensive drug (30 mg•kg-1•day-1; ZOH). Six Zucker Lean (ZL) rats that received saline only (Group 5) served as lean controls (ZLC). Drugs were administered daily for 10 weeks by oral gavage. RESULTS: Sac/val improved echocardiographic parameters of impaired left ventricular (LV) stiffness in untreated ZO rats, without altering the amount of food consumed or body weight gained. In addition to improving DD, sac/val decreased aortic stiffness and reversed impairment in nitric oxide-induced vascular relaxation in ZO rats. However, sac/val had no impact on LV hypertrophy. Notably, sac/val was more effective than val in ameliorating DD. Although, hydralazine was as effective as sac/val in improving these parameters, it adversely affected LV mass index. Further, cytokine array revealed distinct effects of sac/val, including marked suppression of Notch-1 by both valsartan and sac/val, suggesting that cardiovascular protection afforded by both share some common mechanisms; however, sac/val, but not val, increased IL-4, which is increasingly recognized for its cardiovascular protection, possibly contributing, in part, to more favorable effects of sac/val over val alone in improving obesity-associated DD. CONCLUSIONS: These studies suggest that sac/val is superior to val in reversing obesity-associated DD. It is an effective drug combination to blunt progression of asymptomatic DD and vascular stiffness to HFpEF development in a preclinical model of obesity-associated prediabetes.


Assuntos
Aminobutiratos/farmacologia , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Compostos de Bifenilo/farmacologia , Cardiomiopatias Diabéticas/prevenção & controle , Obesidade/tratamento farmacológico , Inibidores de Proteases/farmacologia , Valsartana/farmacologia , Rigidez Vascular/efeitos dos fármacos , Disfunção Ventricular Esquerda/prevenção & controle , Função Ventricular Esquerda/efeitos dos fármacos , Animais , Citocinas/genética , Citocinas/metabolismo , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/fisiopatologia , Diástole , Modelos Animais de Doenças , Combinação de Medicamentos , Masculino , Miocárdio/metabolismo , Miocárdio/patologia , Neprilisina/antagonistas & inibidores , Obesidade/complicações , Obesidade/metabolismo , Obesidade/fisiopatologia , Ratos Zucker , Disfunção Ventricular Esquerda/etiologia , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/fisiopatologia
7.
Cell Signal ; 77: 109825, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33160017

RESUMO

Chronic inflammation and persistent oxidative stress contribute to the development and progression of vascular proliferative diseases. We hypothesized that the proinflammatory cytokine interleukin (IL)-17A induces oxidative stress and amplifies inflammatory signaling in human aortic smooth muscle cells (SMC) via TRAF3IP2-mediated NLRP3/caspase-1-dependent mitogenic and migratory proinflammatory cytokines IL-1ß and IL-18. Further, we hypothesized that these maladaptive changes are prevented by empagliflozin (EMPA), an SGLT2 (Sodium/Glucose Cotransporter 2) inhibitor. Supporting our hypotheses, exposure of cultured SMC to IL-17A promoted proliferation and migration via TRAF3IP2, TRAF3IP2-dependent superoxide and hydrogen peroxide production, NLRP3 expression, caspase-1 activation, and IL-1ß and IL-18 secretion. Furthermore, NLRP3 knockdown, caspase-1 inhibition, and pretreatment with IL-1ß and IL-18 neutralizing antibodies and IL-18BP, each attenuated IL-17A-induced SMC migration and proliferation. Importantly, SMC express SGLT2, and pre-treatment with EMPA attenuated IL-17A/TRAF3IP2-dependent oxidative stress, NLRP3 expression, caspase-1 activation, IL-1ß and IL-18 secretion, and SMC proliferation and migration. Importantly, silencing SGLT2 attenuated EMPA-mediated inhibition of IL-17A-induced cytokine secretion and SMC proliferation and migration. EMPA exerted these beneficial antioxidant, anti-inflammatory, anti-mitogenic and anti-migratory effects under normal glucose conditions and without inducing cell death. These results suggest the therapeutic potential of EMPA in vascular proliferative diseases.


Assuntos
Compostos Benzidrílicos/farmacologia , Caspase 1/metabolismo , Proliferação de Células/efeitos dos fármacos , Glucosídeos/farmacologia , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , RNA/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Movimento Celular/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-17/farmacologia , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estresse Oxidativo/efeitos dos fármacos , RNA/antagonistas & inibidores , RNA/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
8.
Am J Physiol Renal Physiol ; 318(5): F1220-F1228, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32281419

RESUMO

Consumption of a Western diet (WD) induces central aortic stiffening that contributes to the transmittance of pulsatile blood flow to end organs, including the kidney. Our recent work supports that endothelial epithelial Na+ channel (EnNaC) expression and activation enhances aortic endothelial cell stiffening through reductions in endothelial nitric oxide (NO) synthase (eNOS) and bioavailable NO that result in inflammatory and oxidant responses and perivascular fibrosis. However, the role that EnNaC activation has on endothelial responses in the renal circulation remains unknown. We hypothesized that cell-specific deletion of the α-subunit of EnNaC would prevent WD-induced central aortic stiffness and protect the kidney from endothelial dysfunction and vascular stiffening. Twenty-eight-week-old female αEnNaC knockout and wild-type mice were fed either mouse chow or WD containing excess fat (46%), sucrose, and fructose (17.5% each). WD feeding increased fat mass, indexes of vascular stiffening in the aorta and renal artery (in vivo pulse wave velocity and ultrasound), and renal endothelial cell stiffening (ex vivo atomic force microscopy). WD further impaired aortic endothelium-dependent relaxation and renal artery compliance (pressure myography) without changes in blood pressure. WD-induced renal arterial stiffening occurred in parallel to attenuated eNOS activation, increased oxidative stress, and aortic and renal perivascular fibrosis. αEnNaC deletion prevented these abnormalities and support a novel mechanism by which WD contributes to renal arterial stiffening that is endothelium and Na+ channel dependent. These results demonstrate that cell-specific EnNaC is important in propagating pulsatility into the renal circulation, generating oxidant stress, reduced bioavailable NO, and renal vessel wall fibrosis and stiffening.


Assuntos
Aorta/metabolismo , Dieta Ocidental/efeitos adversos , Canais Epiteliais de Sódio/metabolismo , Artéria Renal/fisiopatologia , Doenças Vasculares/metabolismo , Rigidez Vascular , Animais , Aorta/patologia , Aorta/fisiopatologia , Elasticidade , Canais Epiteliais de Sódio/deficiência , Canais Epiteliais de Sódio/genética , Feminino , Fibrose , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Estresse Oxidativo , Artéria Renal/patologia , Transdução de Sinais , Doenças Vasculares/genética , Doenças Vasculares/patologia , Doenças Vasculares/fisiopatologia , Remodelação Vascular
9.
Metabolism ; 109: 154223, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32275972

RESUMO

OBJECTIVE: Obesity is associated with myocardial fibrosis and impaired diastolic relaxation, abnormalities that are especially prevalent in women. Normal coronary vascular endothelial function is integral in mediating diastolic relaxation, and recent work suggests increased activation of the endothelial cell (EC) mineralocorticoid receptor (ECMR) is associated with impaired diastolic relaxation. As the endothelial Na+ channel (EnNaC) is a downstream target of the ECMR, we sought to determine whether EC-specific deletion of the critical alpha subunit, αEnNaC, would prevent diet induced-impairment of diastolic relaxation in female mice. METHODS AND MATERIALS: Female αEnNaC KO mice and littermate controls were fed a Western diet (WD) high in fat (46%), fructose corn syrup (17.5%) and sucrose (17.5%) for 12-16 weeks. Measurements were conducted for in vivo cardiac function, in vitro cardiomyocyte stiffness and EnNaC activity in primary cultured ECs. Additional biochemical studies examined indicators of oxidative stress, including aspects of antioxidant Nrf2 signaling, in cardiac tissue. RESULTS: Deletion of αEnNaC in female mice fed a WD significantly attenuated WD mediated impairment in diastolic relaxation. Improved cardiac relaxation was accompanied by decreased EnNaC-mediated Na+ currents in ECs and reduced myocardial oxidative stress. Further, deletion of αEnNaC prevented WD-mediated increases in isolated cardiomyocyte stiffness. CONCLUSION: Collectively, these findings support the notion that WD feeding in female mice promotes activation of EnNaC in the vasculature leading to increased cardiomyocyte stiffness and diastolic dysfunction.


Assuntos
Diástole/efeitos dos fármacos , Dieta Ocidental/efeitos adversos , Células Endoteliais/química , Coração/fisiopatologia , Canais de Sódio/metabolismo , Rigidez Vascular/efeitos dos fármacos , Animais , Células Cultivadas , Células Endoteliais/metabolismo , Feminino , Camundongos , Camundongos Knockout , Miócitos Cardíacos/patologia , Estresse Oxidativo , Canais de Sódio/deficiência
11.
Cell Signal ; 68: 109506, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31862399

RESUMO

Proximal tubular epithelial cells (PTEC) in the S1 segment of the kidney abundantly express sodium-glucose co-transporters (SGLT) that play a critical role in whole body glucose homeostasis. We recently reported suppression of RECK (Reversion Inducing Cysteine Rich Protein with Kazal Motifs), a membrane anchored endogenous MMP inhibitor and anti-fibrotic mediator, in the kidneys of db/db mice, a model of diabetic kidney disease (DKD), as well as in high glucose (HG) treated human kidney proximal tubule cells (HK-2). We further demonstrated that empagliflozin (EMPA), an SGLT2 inhibitor, reversed these effects. Little is known regarding the mechanisms underlying RECK suppression under hyperglycemic conditions, and its rescue by EMPA. Consistent with our previous studies, HG (25 mM) suppressed RECK expression in HK-2 cells. Further mechanistic investigations revealed that HG induced superoxide and hydrogen peroxide generation, oxidative stress-dependent TRAF3IP2 upregulation, NF-κB and p38 MAPK activation, inflammatory cytokine expression (IL-1ß, IL-6, TNF-α, and MCP-1), miR-21 induction, MMP2 activation, and RECK suppression. Moreover, RECK gain-of-function inhibited HG-induced MMP2 activation and HK-2 cell migration. Similar to HG, advanced glycation end products (AGE) induced TRAF3IP2 and suppressed RECK, effects that were inhibited by EMPA. Importantly, EMPA treatment ameliorated all of these deleterious effects, and inhibited epithelial-to-mesenchymal transition (EMT) and HK-2 cell migration. Collectively, these findings indicate that hyperglycemia and associated AGE suppress RECK expression via oxidative stress/TRAF3IP2/NF-κB and p38 MAPK/miR-21 induction. Furthermore, these results suggest that interventions aimed at restoring RECK or inhibiting SGLT2 have the potential to treat kidney inflammatory response/fibrosis and nephropathy under chronic hyperglycemic conditions, such as DKD.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Compostos Benzidrílicos/farmacologia , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Proteínas Ligadas por GPI/metabolismo , Glucosídeos/farmacologia , Túbulos Renais Proximais/patologia , MicroRNAs/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Antígenos de Neoplasias/metabolismo , Biomarcadores/metabolismo , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Ativação Enzimática/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Glucose/toxicidade , Produtos Finais de Glicação Avançada/toxicidade , Humanos , Peróxido de Hidrogênio/metabolismo , Mediadores da Inflamação/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , MicroRNAs/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Modelos Biológicos , NF-kappa B/metabolismo , Albumina Sérica Humana/toxicidade , Superóxidos/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
12.
Hypertension ; 74(6): 1409-1419, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31630572

RESUMO

Endothelin-1 (ET-1) is a powerful vasoconstrictor peptide considered to be causally implicated in hypertension and the development of cardiovascular disease. Increased ET-1 is commonly associated with reduced NO bioavailability and impaired vascular function; however, whether chronic elevation of ET-1 directly impairs endothelium-dependent relaxation (EDR) remains elusive. Herein, we report that (1) prolonged ET-1 exposure (ie, 48 hours) of naive mouse aortas or cultured endothelial cells did not impair EDR or reduce eNOS (endothelial NO synthase) activity, respectively (P>0.05); (2) mice with endothelial cell-specific ET-1 overexpression did not exhibit impaired EDR or reduced eNOS activity (P>0.05); (3) chronic (8 weeks) pharmacological blockade of ET-1 receptors in obese/hyperlipidemic mice did not improve aortic EDR or increase eNOS activity (P>0.05); and (4) vascular and plasma ET-1 did not inversely correlate with EDR in resistance arteries isolated from human subjects with a wide range of ET-1 levels (r=0.0037 and r=-0.1258, respectively). Furthermore, we report that prolonged ET-1 exposure downregulated vascular UCP-1 (uncoupling protein-1; P<0.05), which may contribute to the preservation of EDR in conditions characterized by hyperendothelinemia. Collectively, our findings demonstrate that chronic elevation of ET-1 alone may not be sufficient to impair EDR.


Assuntos
Endotelina-1/farmacologia , Óxido Nítrico/metabolismo , Vasoconstritores/farmacologia , Vasodilatação/efeitos dos fármacos , Animais , Aorta/fisiopatologia , Western Blotting/métodos , Células Endoteliais/efeitos dos fármacos , Feminino , Técnicas In Vitro , Espectrometria de Massas/métodos , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Sensibilidade e Especificidade
13.
Endocrinology ; 160(12): 2918-2928, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31617909

RESUMO

Obesity and insulin resistance stiffen the vasculature, with females appearing to be more adversely affected. As augmented arterial stiffness is an independent predictor of cardiovascular disease (CVD), the increased predisposition of women with obesity and insulin resistance to arterial stiffening may explain their heightened risk for CVD. However, the cellular mechanisms by which females are more vulnerable to arterial stiffening associated with obesity and insulin resistance remain largely unknown. In this study, we provide evidence that female mice are more susceptible to Western diet-induced endothelial cell stiffening compared with age-matched males. Mechanistically, we show that the increased stiffening of the vascular intima in Western diet-fed female mice is accompanied by enhanced epithelial sodium channel (ENaC) activity in endothelial cells (EnNaC). Our data further indicate that: (i) estrogen signaling through estrogen receptor α (ERα) increases EnNaC activity to a larger extent in females compared with males, (ii) estrogen-induced activation of EnNaC is mediated by the serum/glucocorticoid inducible kinase 1 (SGK-1), and (iii) estrogen signaling stiffens endothelial cells when nitric oxide is lacking and this stiffening effect can be reduced with amiloride, an ENaC inhibitor. In aggregate, we demonstrate a sexual dimorphism in obesity-associated endothelial stiffening, whereby females are more vulnerable than males. In females, endothelial stiffening with obesity may be attributed to estrogen signaling through the ERα-SGK-1-EnNaC axis, thus establishing a putative therapeutic target for female obesity-related vascular stiffening.


Assuntos
Endotélio Vascular/fisiopatologia , Canais Epiteliais de Sódio/metabolismo , Obesidade/fisiopatologia , Caracteres Sexuais , Rigidez Vascular , Animais , Células Cultivadas , Endotélio Vascular/metabolismo , Feminino , Masculino , Camundongos Endogâmicos C57BL , Obesidade/metabolismo
14.
J Pharmacol Exp Ther ; 370(3): 390-398, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31262967

RESUMO

Binge alcohol consumption is a health problem, but differences between the sexes remain poorly defined. We have examined the in vivo effects of three acute, repeat binge alcohol administration on the liver in male and female rats. Sprague-Dawley rats were gavaged with alcohol (5 g/kg body weight) three times at 12-hour intervals. Blood and liver tissues were collected 4 hours after the last binge ethanol. Subsequently, several variables were analyzed. Compared with male rats, females had higher levels of blood alcohol, alanine aminotransferase, and triglycerides. Liver histology showed increased lipid vesicles that were larger in females. Protein levels of liver cytochrome P4502E1 were higher in the liver of females than in the liver of males after binge. Hepatic phospho-extracellular signal-regulated kinase 1/2 and phosph-p38 mitogen-activated protein kinase levels were lower in females compared with males after binge alcohol, but no differences were found in the phospho-C-jun N-terminal kinase levels. Peroxisome proliferator-activated receptor γ-coactivator 1α and cyclic AMP response element binding (CREB) protein levels increased more in female than in male livers; however, increases in phospho-CREB levels were lower in females. Remarkably, c-fos was reduced substantially in the livers of females, but no differences in c-myc protein were found. Binge ethanol caused elevation in acetylated (H3AcK9) and phosphoacetylated (H3AcK9PS10) histone H3 in both sexes but without any difference. Binge alcohol caused differential alterations in the levels of various species of phosphatidylethanol and a larger increase in the diacylglycerol kinase-α protein levels in the liver of female rats compared with male rats. These data demonstrate, for the first time, similarities and differences in the sex-specific responses to repeat binge alcohol leading to an increased susceptibility of female rats to have liver injury in vivo. SIGNIFICANCE STATEMENT: This study examines the molecular responses of male and female rat livers to acute binge alcohol in vivo and demonstrates significant differences in the susceptibility between sexes.


Assuntos
Consumo Excessivo de Bebidas Alcoólicas/genética , Consumo Excessivo de Bebidas Alcoólicas/fisiopatologia , Epigênese Genética , Etanol/efeitos adversos , Fígado/efeitos dos fármacos , Fígado/patologia , Fatores Sexuais , Animais , Consumo Excessivo de Bebidas Alcoólicas/metabolismo , Consumo Excessivo de Bebidas Alcoólicas/patologia , Citocromo P-450 CYP2E1/metabolismo , Diacilglicerol Quinase/metabolismo , Feminino , Glicerofosfolipídeos/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Ratos , Ratos Sprague-Dawley , Transcrição Gênica/efeitos dos fármacos
15.
J Clin Hypertens (Greenwich) ; 21(8): 1071-1074, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31318126

RESUMO

Increased arterial stiffening is not only a hallmark of the aging process but the consequence of many metabolic abnormalities such as insulin resistance (IR), obesity, and metabolic dyslipidemia. In patients with the cardiometabolic syndrome, arterial stiffening is consistently observed across all age groups. A core feature linking obesity and the metabolic syndrome to arterial stiffness has been IR. However, including other metabolic abnormalities such as metabolic dyslipidemia increases the risk prediction of arterial stiffness in a dose-dependent fashion. Chronic hyperinsulinemia also increases the activity of both the systemic and the local RAAS which contributes to the development of arterial stiffness. All of these relevant metabolic features that predict arterial stiffness are appropriately incorporated in the METS-IR used in the current study.


Assuntos
Dislipidemias , Hipertensão , Resistência à Insulina , Insulinas , Síndrome Metabólica , Rigidez Vascular , Humanos , Obesidade
16.
Metabolism ; 99: 57-66, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31302199

RESUMO

OBJECTIVE: Mineralocorticoid receptor activation of the epithelial sodium channel in endothelial cells (ECs) (EnNaC) is accompanied by aldosterone induced endothelial stiffening and impaired nitric oxide (NO)-mediated arterial relaxation. Recent data support enhanced activity of the alpha subunit of EnNaC (αEnNaC) mediates this aldosterone induced endothelial stiffening and associated endothelial NO synthase (eNOS) activation. There is mounting evidence that diet induced obesity diminishes expression and activation of AMP-activated protein kinase α (AMPKα), sirtuin 1 (Sirt1), which would be expected to lead to impaired downstream eNOS activation. Thereby, we posited that enhanced EnNaC activation contributes to diet induced obesity related increases in stiffness of the endothelium and diminished NO mediated vascular relaxation by increasing oxidative stress and related inhibition of AMPKα, Sirt1, and associated eNOS inactivation. MATERIALS/METHODS: Sixteen to twenty week-old αEnNaC knockout (αEnNaC-/-) and wild type littermate (EnNaC+/+) female mice were fed a mouse chow or an obesogenic western diet (WD) containing excess fat (46%) and fructose (17.5%) for 16 weeks. Sodium currents of ECs, endothelial stiffness and NO mediated aortic relaxation were examined along with indices of aortic oxidative stress, vascular remodeling and fibrosis. RESULTS: Enhanced EnNaC activation-mediated WD-induced increases in sodium currents in isolated lung ECs, increased endothelial stiffness and impaired aortic endothelium-dependent relaxation to acetylcholine (10-9-10-4 mol/L). These abnormalities occurred in conjunction with WD-mediated aortic tissue oxidative stress, inflammation, and decreased activation of AMPKα, Sirt1, and downstream eNOS were substantially mitigated in αEnNaC-/- mice. Importantly, αEnNaC-/- prevented WD induced increases in endothelial stiffness and related impairment of endothelium-dependent relaxation as well as aortic fibrosis and remodeling. However, EnNaC signaling was not involved in diet-induced abnormal expression of adipokines and CYP11b2 in abdominal aortic perivascular adipose tissue. CONCLUSION: These data suggest that endothelial specific EnNaC activation mediates WD-induced endothelial stiffness, impaired eNOS activation, aortic fibrosis and remodeling through increased aortic oxidative stress and increased inflammation related to a reduction of AMPKα and Sirt 1 mediated eNOS phosphorylation/activation and NO production.


Assuntos
Dieta/efeitos adversos , Células Endoteliais/metabolismo , Canais Epiteliais de Sódio/metabolismo , Epitélio/metabolismo , Obesidade/metabolismo , Obesidade/patologia , Animais , Dieta Ocidental , Canais Epiteliais de Sódio/genética , Epitélio/patologia , Camundongos , Camundongos Knockout , Músculo Liso Vascular , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Sirtuína 1/metabolismo , Rigidez Vascular/efeitos dos fármacos , Vasodilatação
17.
Biochim Biophys Acta Mol Basis Dis ; 1865(7): 1802-1809, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31109450

RESUMO

Increased cardiovascular disease in aging is partly a consequence of the vascular endothelial cell (EC) senescence and associated vascular dysfunction. In this contest, EC senescence is a pathophysiological process of structural and functional changes including dysregulation of vascular tone, increased endothelium permeability, arterial stiffness, impairment of angiogenesis and vascular repair, and a reduction of EC mitochondrial biogenesis. Dysregulation of cell cycle, oxidative stress, altered calcium signaling, hyperuricemia, and vascular inflammation have been implicated in the development and progression of EC senescence and vascular disease in aging. A number of abnormal molecular pathways are associated with these underlying pathophysiological changes including Sirtuin 1, Klotho, fibroblast growth factor 21, and activation of the renin angiotensin-aldosterone system. However, the molecular mechanisms of EC senescence and associated vascular impairment in aging are not completely understood. This review provides a contemporary update on molecular mechanisms, pathophysiological events, as well functional changes in EC senescence and age-associated cardiovascular disease. This article is part of a Special Issue entitled: Genetic and epigenetic regulation of aging and longevity edited by Jun Ren & Megan Yingmei Zhang.


Assuntos
Doenças Cardiovasculares/fisiopatologia , Endotélio Vascular/fisiopatologia , Envelhecimento , Animais , Doenças Cardiovasculares/metabolismo , Senescência Celular , Endotélio Vascular/metabolismo , Humanos , Estresse Oxidativo , Transdução de Sinais , Rigidez Vascular
18.
Brain Sci ; 9(3)2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30866531

RESUMO

Type 2 diabetes is associated with diabetic cognopathy. Anti-hyperglycemic sodium glucose transporter 2 (SGLT2) inhibitors have shown promise in reducing cognitive impairment in mice with type 2 diabetes mellitus. We recently described marked ultrastructural (US) remodeling of the neurovascular unit (NVU) in type 2 diabetic db/db female mice. Herein, we tested whether the SGLT-2 inhibitor, empagliflozin (EMPA), protects the NVU from abnormal remodeling in cortical gray and subcortical white matter. Ten-week-old female wild-type and db/db mice were divided into lean controls (CKC, n = 3), untreated db/db (DBC, n = 3), and EMPA-treated db/db (DBE, n = 3). Empagliflozin was added to mouse chow to deliver 10 mg kg-1 day-1 and fed for ten weeks, initiated at 10 weeks of age. Brains from 20-week-old mice were immediately immersion fixed for transmission electron microscopic study. Compared to CKC, DBC exhibited US abnormalities characterized by mural endothelial cell tight and adherens junction attenuation and/or loss, pericyte attenuation and/or loss, basement membrane thickening, glia astrocyte activation with detachment and retraction from mural cells, microglia cell activation with aberrant mitochondria, and oligodendrocyte⁻myelin splitting, disarray, and axonal collapse. We conclude that these abnormalities in the NVU were prevented in DBE. Empagliflozin may provide neuroprotection in the diabetic brain.

19.
Cardiovasc Diabetol ; 18(1): 40, 2019 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-30909895

RESUMO

OBJECTIVE: Diabetic nephropathy (DN) is characterized by glomerular and tubulointerstitial injury, proteinuria and remodeling. Here we examined whether the combination of an inhibitor of neprilysin (sacubitril), a natriuretic peptide-degrading enzyme, and an angiotensin II type 1 receptor blocker (valsartan), suppresses renal injury in a pre-clinical model of early DN more effectively than valsartan monotherapy. METHODS: Sixty-four male Zucker Obese rats (ZO) at 16 weeks of age were distributed into 4 different groups: Group 1: saline control (ZOC); Group 2: sacubitril/valsartan (sac/val) (68 mg kg-1 day-1; ZOSV); and Group 3: valsartan (val) (31 mg kg-1 day-1; ZOV). Group 4 received hydralazine, an anti-hypertensive drug (30 mg kg-1 day-1, ZOH). Six Zucker Lean (ZL) rats received saline (Group 5) and served as lean controls (ZLC). Drugs were administered daily for 10 weeks by oral gavage. RESULTS: Mean arterial pressure (MAP) increased in ZOC (+ 28%), but not in ZOSV (- 4.2%), ZOV (- 3.9%) or ZOH (- 3.7%), during the 10 week-study period. ZOC were mildly hyperglycemic, hyperinsulinemic and hypercholesterolemic. ZOC exhibited proteinuria, hyperfiltration, elevated renal resistivity index (RRI), glomerular mesangial expansion and podocyte foot process flattening and effacement, reduced nephrin and podocin expression, tubulointerstitial and periarterial fibrosis, increased NOX2, NOX4 and AT1R expression, glomerular and tubular nitroso-oxidative stress, with associated increases in urinary markers of tubular injury. None of the drugs reduced fasting glucose or HbA1c. Hypercholesterolemia was reduced in ZOSV (- 43%) and ZOV (- 34%) (p < 0.05), but not in ZOH (- 13%) (ZOSV > ZOV > ZOH). Proteinuria was ameliorated in ZOSV (- 47%; p < 0.05) and ZOV (- 30%; p > 0.05), but was exacerbated in ZOH (+ 28%; p > 0.05) (ZOSV > ZOV > ZOH). Compared to ZOC, hyperfiltration was improved in ZOSV (p < 0.05 vs ZOC), but not in ZOV or ZOH. None of the drugs improved RRI. Mesangial expansion was reduced by all 3 treatments (ZOV > ZOSV > ZOH). Importantly, sac/val was more effective in improving podocyte and tubular mitochondrial ultrastructure than val or hydralazine (ZOSV > ZOV > ZOH) and this was associated with increases in nephrin and podocin gene expression in ZOSV (p < 0.05), but not ZOV or ZOH. Periarterial and tubulointerstitial fibrosis and nitroso-oxidative stress were reduced in all 3 treatment groups to a similar extent. Of the eight urinary proximal tubule cell injury markers examined, five were elevated in ZOC (p < 0.05). Clusterin and KIM-1 were reduced in ZOSV (p < 0.05), clusterin alone was reduced in ZOV and no markers were reduced in ZOH (ZOSV > ZOV > ZOH). CONCLUSIONS: Compared to val monotherapy, sac/val was more effective in reducing proteinuria, renal ultrastructure and tubular injury in a clinically relevant animal model of early DN. More importantly, these renoprotective effects were independent of improvements in blood pressure, glycemia and nitroso-oxidative stress. These novel findings warrant future clinical investigations designed to test whether sac/val may offer renoprotection in the setting of DN.


Assuntos
Aminobutiratos/farmacologia , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Nefropatias Diabéticas/prevenção & controle , Glomérulos Renais/efeitos dos fármacos , Túbulos Renais/efeitos dos fármacos , Inibidores de Proteases/farmacologia , Tetrazóis/farmacologia , Animais , Pressão Arterial/efeitos dos fármacos , Biomarcadores/metabolismo , Compostos de Bifenilo , Glicemia/metabolismo , Nefropatias Diabéticas/sangue , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/fisiopatologia , Modelos Animais de Doenças , Combinação de Medicamentos , Fibrose , Glomérulos Renais/metabolismo , Glomérulos Renais/fisiopatologia , Glomérulos Renais/ultraestrutura , Túbulos Renais/metabolismo , Túbulos Renais/fisiopatologia , Túbulos Renais/ultraestrutura , Lipídeos/sangue , Masculino , Neprilisina/antagonistas & inibidores , Estresse Nitrosativo/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Proteinúria/fisiopatologia , Proteinúria/prevenção & controle , Ratos Zucker , Fatores de Tempo , Valsartana
20.
Hypertension ; 73(4): 849-858, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30827147

RESUMO

Obesity is characterized by enhanced MR (mineralocorticoid receptor) activation, vascular stiffness, and associated cardiovascular and kidney disease. Consumption of a Western-style diet (WD), high in saturated fat and refined carbohydrates, by female mice, leads to obesity and vascular stiffening. Use of ECMR (endothelial cell-specific MR) knockout mice supports that ECMR activation is critical for development of vascular and cardiac fibrosis and stiffening. However, the role of ECMR activation in kidney inflammation and fibrosis remains unknown. We hypothesized that cell-specific deletion of ECMR would prevent WD-induced central aortic stiffness and protect the kidney from endothelial dysfunction and vascular stiffening. Four-week-old female ECMR KO and wild-type mice were fed either mouse chow or WD for 16 weeks. WD feeding increased body weight and fat mass, proteinuria, as well as vascular stiffness indices (pulse wave velocity and kidney artery stiffening) and impaired endothelial-dependent vasodilatation without blood pressure changes. The WD-induced kidney arterial stiffening was associated with attenuated eNOS (endothelial NO synthase) activation, increased oxidative stress, proinflammatory immune responses, alterations in extracellular matrix degradation pathways, and fibrosis. ECMR deletion prevented these abnormalities by improving eNOS activation and reducing macrophage proinflammatory M1 polarization, expression of TG2 (transglutaminase 2), and MMP (matrix metalloproteinase)-9. Our data support the concept that ECMR activation contributes to endothelial dysfunction, increased kidney artery fibrosis/stiffening, and impaired NOS (NO synthase) activation, processes associated with macrophage infiltration and polarization, inflammation, and oxidative stress, collectively resulting in tubulointerstitial fibrosis in females consuming a WD.


Assuntos
Endotélio Vascular/metabolismo , Nefropatias/patologia , Obesidade/fisiopatologia , Receptores de Mineralocorticoides/metabolismo , Artéria Renal/patologia , Rigidez Vascular/fisiologia , Vasodilatação/fisiologia , Animais , Dieta Ocidental/efeitos adversos , Endotélio Vascular/fisiopatologia , Feminino , Fibrose/metabolismo , Fibrose/patologia , Nefropatias/etiologia , Nefropatias/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/complicações , Obesidade/metabolismo , Estresse Oxidativo , Artéria Renal/metabolismo , Artéria Renal/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...